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Abstract. Electron transport through amorphous monatomic metallic structures generated
earlier by molecular dynamics simulations is studied numerically. The interference of electronic
trajectories backscattered by the structural disorder probes the multistable structural relaxations
responsible for low-frequency noise in real metallic contacts. The structure of these modes is
illustrated; the dependence of the magnitude of the noise on the size and structure of the modes
is studied. The transition from a multistable behaviour to a more complex one is observed for
temperatures far below the melting temperature. The current fluctuations observed numerically
resemble the complex behaviour reported earlier for current noise in small metallic structures at
moderate temperatures.

1. Introduction

In recent years substantial progress in the study of the flicker noise problem was achieved.
This is mainly connected with experiments on small conducting systems, where the 1/f

noise was decomposed [1, 2] into a sum of contributions due to ‘elementary’ defects with
internal degrees of freedom—‘fluctuators’. These defects switch between two possible
configurations and cause the ‘telegraph’ resistance noise in small contacts. In metallic
systems they are believed to be related to structural defects which at low temperatures are
seen as the well-known two-level systems [3–8]. We would also like to mention work where
the two-level fluctuation studied exists in atomic-size contacts produced with the help of the
break-junction method [9]. However, there is still no clear understanding of the microscopic
nature of these defects.

Many experimental results can be explained [10] by the model of independent fluctuators
described by rate equations for the occupation numbers. The soft-potential approach which
relates the fluctuators to certain ‘soft’ double-well effective potentials has been used to
describe this picture [8, 10]. It fails, however, to give a microscopic insight into the problem.
On the other hand, some experiments revealed a much more complex behaviour, exhibiting
in particular fluctuator interactions and non-stationary chaotic behaviour of the fluctuator
parameters [2]. These features cannot easily be described within the framework of the soft-
potential model. Thus a microscopic analysis of the problem would be desirable. However,
a description of disordered materials based on purely analytical methods encounters obvious
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difficulties. Numerical simulations based on molecular dynamics (MD) methods are used
successfully to model the structure of glassy materials as well as their thermodynamic
properties including the density of states. In particular, many details related to low-energy
vibrational excitations in these materials have been revealed in this way [11]. To our
knowledge, electron transport through disordered media has not been treated by these
numerical methods.

Real metallic point contacts studied experimentally can be as small as 3–10 nm in
diameter and thus consist of only∼103–104 atoms, which is just of the order accessible to
numerical simulations. Moreover, the structure of these constrictions is not expected to be
perfectly crystalline especially in view of the amorphous films used to prepare these point
contacts.

Therefore, it is attractive to use a simulation approach to study slowly relaxing meta-
stable configurations in disordered metallic structures with an application to low-frequency
noise. In the following we will give the results of a first such study of noise within the
framework of simplified model considerations.

The main results of our paper described in the following are:

(1) We have identified local atomic arrangements leading to metastable configurations.
(2) A transition from a simple telegraph signal to a more complex behaviour with

increasing temperature was observed which reproduces the experimental behaviour; it is
important that the ratio of this ‘critical’ temperature to the melting temperature agrees with
experiment.

(3) The magnitude of the resistance fluctuations and its dependence on the number of
atoms forming the ‘fluctuator’ is considered; the results of the simulations are in agreement
with experiment.

2. Theoretical aspects

Our aim is to analyse numerically charge transport through disordered structures prepared
previously by molecular dynamics [12]. The structures studied are considered to model
3D cubic microbridges (with side lengtha) between bulk contacts. The atoms forming
the structures are taken to be scatterers for the incident electrons. We consider the weak-
scattering limit where the mean free path of the electrons,l, is larger thana. This implies
that the scattering cross-sections obeys the inequalitynis < a−1 whereni = N/a3 and
N is the total number of atoms in the structure. In real glassy metals the mean free path
is significantly larger than the electron wavelengths, and, therefore, the approximation is
justified for nanoscale point contacts.

To study the conductance changes caused by ‘jumps’ in the structural configurations
we relate them to the changes of the interference contribution to the backscattered electron
flux in the contact region. The weak-scattering approximation allows us to neglect multiple
scattering, restricting our calculations to a minimal number of scattering events. This
corresponds to the concept of local interference which has been introduced in reference
[13] for the case of scattering by complex defects [14]. Mesoscopic effects in bulk samples
caused by local interference of a more general type have been considered in reference [15].

The standard approach to the conductanceG of small contacts exploits the Landauer
formula (see, e.g., reference [16])

G = e2

h

∑
α

(1− Rα) (1)
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whereRα is the reflection coefficient for channel (mode)α. In a simulation, one needs to
identify these modesα. This can easily be done for 2D quantum point contacts with smooth
‘adiabatic’ boundaries [17], whereas for realistic structures one meets with considerable
problems. In particular we mention reference [18] where for the case of a short 2D channel
the conductance is calculated numerically by matching the ‘bulk’ plane-wave modes to the
channel’s transversal modes.

Here, we will apply the ‘wave optics’ approach which was developed for the transport
in structures with a small number of scattering events and is in the spirit of reference
[18]. In reference [19] this approach was developed and successfully applied to analyse
experimental data on mesoscopic transport in 3D ballistic point contacts with diffusive
surroundings. We also want to mention the simulations of quasi-ballistic transport in static
disordered structures [20] based on the Green’s function method whose results agree well
with those of reference [19].

The ‘wave optics’ approach exploits the fact that for metallic point contacts transport
is always semiclassical in the sense that the number of quantum channels is large,
corresponding to the ‘geometrical optics’ approximation for the de Broglie waves. For
an ideal point contact, separating the bulk leads, the modesα correspond to the ‘optical
beams’ cut by the orifice from the incident plane wavesk. The ‘quantization’ of the modes
originates from the Fourier expansion of the kernel of the Fresnel–Kirchhoff integral which
describes the diffraction of the incident plane wave by the aperture in an opaque screen; see,
e.g., reference [21]. The number of the modes,∼(kF a)2 (with kF the Fermi wave vector),
is the number of independent solutions of the diffraction problem for a given|k| ≈ kF .

To calculate the backscattering coefficientsRα within this approach we use the standard
perturbation theory of scattering using Schrödinger’s equation [22]. We consider the scatt-
ering of the incoming modesψα which, as discussed above, at distances of the order of the
atomic scale, can be approximated by plane waves with wave vectorskα. The resulting
wave, scattered by a scattereri at pointRi , is

ψs,α(i, r) = ψα(Ri )Fi

|r −Ri | exp(ik|r −Ri |)). (2)

HereFi is the scattering amplitude which in the following we assume to be equal for all
scatterers (F = (s/4π)1/2). Including multiple scattering would add higher-order terms in
F/a. For a random distribution of scatterers the sum over all possible configurations would
give a factor∼N1/2 to the correction of the wave-function equation, expression (2). Thus
the total contribution of trajectories involving multiple scattering is via a factor

s1/2N1/2/(a(4π)1/2) = s1/2n
1/2
i a1/2/(4π)1/2� 1

which is smaller than the contribution due to single scattering, i.e. neglecting multiple
scattering is justified.

The coefficientRα is by definition the ratio of the ‘backscattered’ current to the ‘incident’
current of the modeα. In our approximation we have

Rα = 1

v⊥,α|ψα|2
∫
S

d2r
ieh̄

2m
(〈ψ∗s,α|∇|ψs,α〉 + CC). (3)

Hereψs,α is the sum of the waves scattered by the scatterersi andv⊥,α is the velocity of
the incident electron wave perpendicular to the aperture. The apparent divergency due to
v⊥,α in equation (3) is integrable sincev⊥,α ∝ (kF − kα,⊥)1/2, with kα,⊥ the projection of
kα onto the orifice plane, and does not affect the final result of equation (4).S is the orifice
area whiler is the 2D radius vector in the detector plane. Figure 1 depicts schematically
two backscattered trajectories which interfere in the detector plane.
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Figure 1. A schematic plot of backscattered trajectories each involving one atom acting as a
scatterer of the incident electron wave. The incident wave is represented by its wave vectork.
Filled circles depict some of the atoms in the point contact.Ri andRj denote the positions of
the atoms andr the two-dimensional radius vector in the detector plane.

From equations (2) and (3) we get for the change of the conductance due to back-
scattering

Wb ≡ δGb

G
=
(
F 2

/∑
α

(1− Rα)
)

×
∑
α

∫
S

d2r
∑
i,j

cos(kF (|r −Ri | − |r −Rj |)+ kα · (Ri −Rj ))
|r −Ri ||r −Rj |

× (cos( 6 (OX, r −Ri ))+ cos( 6 (OX, r −Rj ))). (4)

Here OX is the contact axis. Equation (4) is the basic input for the numerical studies
described below. The advantage of the coordinate representation used in our approach
is its direct contact with the simulation of electron transport through the structure. In
our calculations we consider amorphous structures where all atoms act as scatterers. For
relatively clean crystalline structures only defect atoms are responsible for backscattering.
We are mainly interested in the changes of the backscattering due to changes of the structures
and use all atomic positions as input for equation (4). In the absence of defects one would
obtain the conductance of purely ballistic contact from the Landauer formula, equation (1).

3. Computational details and results

With the help of equation (4) we carried out numerical studies of the backscattered current
for amorphous and crystalline monatomic metallic structures and for amorphous selenium.
We would like to note, however, that dealing with monatomic metallic glasses one meets
difficulties due to their strong tendency to crystallize. This problem is known both from
experiments on real metallic glasses and from computer simulations. One consequence is
that the structural relaxations are mostly irreversible, preventing the formation of multistable
structures supposed to give rise to the ‘fluctuators’. We will discuss these problems in more
detail in relation to the results of our simulations. Additionally we have calculated the
backscattered electron flux by using a more complex structure of amorphous Se, which is
much more stable against crystallization. The results of the MD simulation [23, 24] have
shown that both soft-sphere and Se glasses behave similarly as regards their dynamics,
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which for both systems at low temperature exhibits local relaxations. Although electron
transport in real Se-based structures is hardly similar to that in metals, we believe that the
simulations for the corresponding model structures are in any case instructive. Indeed, one
should keep in mind that ‘fluctuators’ are thought to be related to defect regions where the
structure might be even more complex than in a monatomic metallic glass.

The metallic structures were generated in earlier MD simulations [11, 12, 24]. The
interatomic interaction in these systems is given by a soft-sphere potential

V (r) = ε(σ/r)6+ A(r/σ)4+ B
where the energy scale is given in units ofε and the length scale in units ofσ . In the
simulations we used the unitsε = σ = m = 1, m being the atomic mass. The density is
kept constant atρσ 3 = 1 and the nearest-neighbour distance corresponds to about 1.1σ . To
reduce the numerical effort, the potential is cut off atrc/σ = 3.0 and shifted by a polynomial
A(r/σ)4 + B with A = 2.54× 10−5ε andB = −3.43× 10−3ε. Both the potential and the
force are zero at the cut-off. Such a potential is appropriate to model metallic systems [25].

As described by Laird and Schober [11], to bypass crystallization the model glassy
structures were produced from well equilibrated liquids by a rapid quench. With typical
quench rates of the order 0.25kB/

√
mσ 2/ε the configurations are cooled to roughly half

the glass-transition temperatureTg and left there for more than 1200 molecular dynamics
time-steps (MDS), i.e. about 60 typical vibration periods, to stabilize the potential energy.
The local minima of the structures were found by minimizing the potential energy with a
steepest-descent/conjugate-gradient algorithm [26]. To obtain a reasonable statistics for the
structures consisting of 500 and 1024 atoms, in all 60 and 21 model glassy structures were
produced, respectively.

The structural changes of these metallic glasses were observed in a previous molecular
dynamics simulation [12]. To study the dynamics of these soft-sphere glasses they were
heated with help of the ‘Velocity–Verlet’ algorithm in stages to temperatures ranging from
0.05Tg to 0.125Tg. The molecular dynamics simulation was carried out with periodic
boundary conditions to reduce surface effects. After heating the glasses to the desired
temperature, the temperature was kept constant by scaling the velocities of the atoms. At
each temperature the dynamics of the systems was followed for 9000 time-steps, which
corresponds roughly to 500 periods of a typical vibration.

To observe more complex structures and to reduce further the ‘finite-size’ effects,
additionally 15 soft-sphere glasses withN = 5488 were generated from hot melts and
used to study relaxations in a greater detail [24]. These glasses were heated to temperatures
ranging from 0.05Tg up to 0.15Tg and left there for 90 000 MDS (an order of magnitude
longer than for the smaller systems).

During the molecular dynamics simulations at constant temperature the configurations
move to new minima of the energy landscape due to processes of local hopping over small
energy barriers. To detect new configurations on the energy hypersurface the displacements
of the atoms from the metastable equilibrium positionsRi

n of atomn in configurationi are
measured and the total displacement of the structure is defined as

1R2(t) =
∑
n

(Rn(t)−Ri
n)

2 (5)

whereRn(t) is the actual position vector of atomn. If the total displacement of the atoms
exceeds a cut-off value and the residence time of the atoms in the new positions also exceeds
a minimal period of at least three soft, low-frequency vibrations (several hundred MDS) the
new positions of the particles are accepted as a new minimum configuration. The cut-offs
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of the displacement and residence time, respectively, are chosen such that spurious minima
are avoided. This procedure is described in greater detail in references [12, 24].

These minima are monitored during the molecular dynamics runs. The corresponding
relaxations from one minimum to another can be either reversible or irreversible. The
irreversible jumps are mainly due to the instability of the monatomic metallic glasses. This
instability manifests itself in the fact that during the observation time some of the samples
partially crystallized. Such a crystallization is connected with a global rearrangement of
nearly all atoms in the configuration. This effect depends strongly on the size of the samples
used in the simulation. The larger the system, the more stable the configurations. The largest
systems show greater stability towards crystallization; just one configuration (out of 15 with
N = 5488 atoms) crystallized during the observation time at a temperatureT = 0.15Tg.
But the tendency to lower the potential energy persists during the simulation.

Therefore, the first jumps after heating up to different temperatures are related to non-
local rearrangements of the glasses, i.e. jumps with large displacements involving many
atoms and leading to more stable configurations. These jumps are followed by relaxations
located at only a few atoms. A measure for the localization of a jump is the effective mass

Meff = m (1R)2

|1R2
max|

(6)

where

(1R)2 =
∑
n

(Ri
n −Rf

n )
2

is the square of the total distance1R between two successive minimum configurations
(called ‘initial’ and ‘final’ positions of the jump).Ri,f

n denotes the respective initial and
final positions of atomn; |1R2

max| is the maximal distance that a single atom jumps in this
relaxation. Since we take the masses of the atoms comprising the structures as equal,Meff

counts the effective number of particles contributing to the hopping process.
In an extended computer simulation it is found that the displacement of a single atom in

the relaxation is only a fraction of the nearest-neighbour distance (typically a tenth of a bond
length), i.e. relaxations at low temperatures are local processes with small displacements
of the atoms contributing to this thermally activated jump. However, even the small
displacements of the single activated atoms exceed the vibration amplitudes. Since the
typical total distance between two minimum configurations is about one or several nearest-
neighbour distances [27], the effective mass is of the order of 10 to 100 atoms contributing
essentially to the relaxations. It is found that these entities of some ten particles involved
in the hopping processes form chain-like structures which move collectively along these
chains [28].

Since we are interested in multistable configurations, we restrict ourselves to the
relatively rare reversible changes of the configurations, which means that the initial con-
figuration and the final one of successive jumps are identical. A measure for the reversibility
of successive jumps can be given by the quantitycRR′ :

cRR′ = 1

1R1R′

N∑
n=1

|1Rn||1R′n| (7)

where1Rn = (Ri
n−Rf

n ) is the displacement vector of atomn in the relaxation1R (Ri,f
n

being, as above, the initial and the final positions of atomn in the relaxation1R), and1R
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and1R′ are the total jump lengths of two successive relaxations, given by

1R2 =
N∑
n=1

(1R2
n).

For a reversible jump one hascRR′ = 1, i.e. the same atoms are contributing equally to the
two jumps. If the jumps were uncorrelated,cRR′ would be of the order ofcRR′ = Np/N ,
whereNp is the number of atoms involved in the hopping. During the MD runs of the
60 glasses with 500 atoms only two structures undergo reversible jumps, whereas for the
glasses with 1024 soft spheres only one reversible relaxation occurred. The effective masses
of the reversible relaxations observed in soft-sphere glasses withN = 500 and 1024 atoms
range from 6 to 16 atomic masses. AtT ≈ 0.1Tg, half of the glasses withN = 5488 settled
during the observation time to configurations where reversible jumps involving up to four
local minima are observed. For the simulations with 5488 atoms, reversible relaxations with
effective masses from 9 to 50 atoms were found.

In order to calculate the electron backflow we use incident electron waves withk-vectors
of lengthk = π/σ . This value determines the ‘discretization’ of the numerical integration
in equation (4). The summation over the modes in equation (4) becomes a sum over discrete
angles which we take as1φ = 2π/ka and1θ = π/ka, wherea is the side length of the
amorphous sample; for the metallic glasses the side length isa = N1/3σ . Using different
grids for the numerical discretization changes the results by only a few per cent, i.e. they
are not crucially sensitive to the specification of the modes. To escape numerical problems
with vanishing denominators in equation (4) we integrated overr not in the front orifice
plane but instead in a ‘detector’ plane shifted by approximately one atomic distance from
the orifice plane. The integration becomes a double sum withx = i 1x and y = j 1y

where1x = 1y = 1/k. The detector plane is taken about two to three times larger than
the orifice; the thus-neglected backscattered current is less than 10–25%. As the value of
the scattering amplitudeF , we take (typical for metals)kFF ' 1. One can show that
for a relatively small contact volume (smalla andN ) the weak-scattering approximation
(sN/a2 < 1) holds with this assumption.

To test our procedure we applied it to the simple case of a self-interstitial atom in
an fcc metal. This so-called dumb-bell configuration is formed by replacing one atom
by a pair of atoms aligned in the (100) direction [29]. The elementary jump process of
this self-interstitial atom configuration is to a nearest-neighbour site and involves a change
of orientation to a different cubic axis, i.e. the dumb-bell is now aligned in a (010) or
(001) direction. Using the soft-sphere potential we construct configurations comprising
501 atoms with the dumb-bell in the middle of the structure aligned in (100) and (001)
directions. The coordinates of the atoms are then used as input for equation (4) to calculate
the backscattering of these structures. For the configuration with the dumb-bell in the (100)
direction, i.e. perpendicular to the detector plane (see figure 1), we findWb = 0.536, and
for the two other orientations, (001) and equivalently the (010) alignment, parallel to the
detector plane, we calculateWb = 0.540. From this we deduce that the relative magnitude
of the fluctuation due to the reorientation of the dumb-bell is about 0.7%.

In the following we present the relative magnitudes of the fluctuations caused by jumps
and relaxations in monatomic metallic glasses and defect structures as described above.
Since we are interested in the changes of the backscattered flow due to relaxations of
the samples, we determine the minima observed in the MD runs and calculateWb for
these structures corresponding to the local minima of the potential energy. We neglect the
contribution of atomic vibrations to the electronic backscattering, which will be similar for
different configurations.
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Figure 2. The fluctuator behaviour of a configuration withN = 500 atoms.Wb is plotted
against time in units of MDS. The reversible relaxation att ≈ 25 000 MDS has an effective
massMeff = 16m and a total jump length1R = 1.03σ .

Figure 3. The fluctuator behaviour of a configuration withN = 1024 atoms.Wb is plotted
against time in units of MDS. The reversible relaxation att ≈ 6000 MDS has an effective mass
Meff = 6m and a total jump length1R = 0.44σ .

In figure 2 we showWb for a metallic glass withN = 500 atoms. After the initial
rearrangement connected with a decrease in potential energy, the system was stable for more
than 20 000 MDS before a reversible jump occurred with a total jump length of1R = 1.03σ
and an effective massMeff = 16m. The relative magnitude of the backscattered current is
about 0.6%.

Figure 3 showsWb for a system withN = 1024 atoms. After approximately 6000
time-steps a reversible jump occurred with a total jump length of1R = 0.44σ and an
effective massMeff = 6m. The fluctuation due to the structural relaxation is approximately
0.2% of the total interference contribution.

To simulate more complex multistable atomic aggregates, larger samples are needed.
Indeed, as we have discussed, the smaller systems are relatively unstable, thus preventing
extended multistable atomic aggregates from forming. Therefore, we have also studied
the current transport based on the results for a glass withN = 5488 atoms. To shorten
simulations of the interference pattern we restricted the summations over the scattering
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Figure 4. The fluctuator behaviour in a glass of 5488 soft spheres undergoing fifteen jumps
between eight minima denoted by A, B, C,. . . , H. Different directions of detector planes are
shown: (a) plane⊥ x-axis and (b) plane⊥ z-axis. Two direct reversible relaxations (with
effective massesMeff = 16m andMeff = 18m and corresponding jump lengths1R = 0.72σ
and1R = 1.22σ ) can be observed.Wb is plotted against time in units of MDS.

atomsR in equation (4) to a subsetNs ≈ 700 of the atoms including and surrounding the
active ones.

The conductance change of this glass heated to 0.1Tg and aged for 90 000 MDS is
shown in figure 4. In figure 4(a) we show the signal of the backscattering for the detector
placed perpendicular to the arbitrarily chosenx-axis of the structure, while in figure 4(b)
we measure the backscattered current in the plane perpendicular to thez-axis of the point
contact, i.e. we have placed the detector parallel to thexy-plane of the sample of the
configuration and the bulk leads are now perpendicular to thexy-plane of the nanoscale
point contact. The results of the backscattering are much more complex than the ones
described above for the smaller systems: the complex behaviour of the conductance change
shown in figure 4 results from 15 jumps between eight minima denoted by A, B, C,. . . ,
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H according to their occurrence during the simulation. After an initial drop in energy the
glass relaxes to a (meta)stable region in the configurational space, where we monitored these
strongly correlated jumps between eight minima of nearly equal energy. After about 17 000
MDS a reversible jump (E→ F → E) occurred with a total jump length1R = 0.72σ
and an effective massMeff = 16m. At t ≈ 42 000 MDS the glass returns to minimum A
and relaxes to minimum C (1R = 1.22σ andMeff = 18m) and again back to minimum A.
After visiting two other minima G and H, the jump pattern (A→ C→ A) is repeated.

The magnitude of the relative backscattered electron flux is about 0.037% for the
contribution of the first reversible relaxation (E→ F→ E) measured in a detector plane
perpendicular to thex-axis of the sample (see the experimental set-up in figure 1) and
0.032% for the second pronounced fluctuation (A→ C→ A).

The signal of these fluctuators changes drastically when we measure the backscattered
current in the plane perpendicular to thez-axis of the configuration. As described above,
we have placed the detector parallel to thexy-plane of the sample. The change of the
experimental set-up enables us to detect inhomogeneities in the structure and in the dynamics
of the nanoscale point contact. The first reversible jump (E→ F→ E) causes a change of
the relative magnitude of the backscattered electron flux of approximately 0.11% and the
second one (A→ C→ A) leads to a relative change in the current of about 0.66%. These
changes of the signals with respect to the axis may be due to the strong displacements of
the atoms in thez-direction in both reversible relaxations.

Figure 5. The fluctuator behaviour of a configuration withN = 500 atoms, which partially
crystallized at a temperatureT = 0.05Tg . The last three jumps with effective masses
Meff = 74m, 72m, 74m have jump lengths1R = 7.75σ, 6.83σ and 6.53σ , respectively. These
relaxations are strongly correlated withcRR′ = 0.958, 0.996.Wb is plotted against time in units
of MDS.

Additionally we calculated the backscattered current also for a partially crystallized
defect structure ofN = 500 atoms. After heating to 0.05Tg the configuration begins to
crystallize. During the observation time the sample relaxes to another defect configuration.
The initial relaxation is accompanied by a large drop in energy (1E = 30.28ε) while the
following jumps lead to minima with similar energies (1E < 10−7ε); in the last relaxation
the system jumps to a minimum with slightly higher energy than the one preceding it
(1E = 0.006 70ε). The corresponding jump length is1R = 13.70σ for the initial
relaxation. For the three following jumps (1R = 5.23σ, 7.75σ, 6.83σ ) with small energy
changes we find effective massesMeff = 68m, 74m, 72m, respectively. For the last jump the
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effective mass is about 74m and the jump length is about 6.53σ . The jumps following the
initial decrease in energy are strongly correlated, i.e. mostly the same atoms are involved.
Figure 5 shows the results for the calculations of the backscattering flowWb plotted versus
the observation time. The amplitude of the fluctuations after the initial step is about 3%.

So far we have considered monatomic metallic glasses, where due to crystallization
effects long observation times are not accessible. Compared to the soft-sphere glasses the
models for selenium are more stable, and longer observation times are possible without an
appreciable drop in potential energy. Therefore, we also report results for the backscattered
electron flux, normalized with respect to the incident flow, for a selenium glass. Although
selenium is not a metal, the complex structure comprising chains and rings may be a good
model for atomic entities forming the ‘fluctuators’.

Figure 6. The fluctuator behaviour of a configuration withN = 750 Se atoms, at a
temperatureT = 0.04Tg . During the time ranget = 15–260 ps the glass switches between
two configurations. The effective mass of the reversible jumps isMeff ≈ 10 and the jump length
1R ≈ 0.5 Å. The signal of the fluctuation is about 0.42% of the total contribution.Wb is
plotted against time in units of ps.

The interaction of the Se atoms is described by a short-range three-body potential
[30]. The glasses are produced by quenching corresponding liquids with quench rates of
Ṫ = 1012–1014 K s−1 and pressures up to 10 GPa [23]. Note that if the quenching were
too rapid, density fluctuations of the liquid could be frozen in. One possible way to avoid
the formation of resulting micropores is to apply lower quench rates and/or pressure. The
glasses are heated to temperatures of about 0.30Tg and then observed for approximately
0.5 ns at every temperature (this corresponds to roughly 3400 high-frequency vibrations).
In figure 6 we plot the backscattered flowWb versus time for a glass ofN = 750 atoms
at T ≈ 0.04Tg. One can clearly observe a telegraph signal caused by a reversible jump
occurring four times during the observation period. Its effective mass isMeff = 10 and its
total jump length1R = 0.5 Å. The amplitude of the fluctuation is about 0.42% of the total
interference contribution to the backflow.

4. Discussion and conclusions

We calculated the conductance fluctuations via the standard Landauer formula from the
change of backscattering by the atoms comprising the junction. For the small junctions
considered here electron scattering can be treated ballistically in the weak-scattering limit.
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In geometries where multiple scattering is important, different methods have to
be used. Todorov and Sutton, and Bratkovskyet al combine a molecular dynamics
simulation with aT -matrix approach within the tight-binding approximation to calculate the
conductance through atomic-scale metallic contacts during pull-off [31–33]. In agreement
with experiment, they observe conductance jumps due to atomic rearrangements in the tip.

We want to point out that our approach is not suitable for reproducing the limiting case
where the point contact merges into the crystalline structure. In this limit the conductance
is no longer dominated by the scattering of the atoms in the junctions and the aperture.

Let us now consider the characteristic magnitude of the non-stationary current fluct-
uations. As seen from equation (4), one can discriminate between two terms:

(i) the ‘classical’ backscattering related to the diagonal terms in the sum of equation (4)
which is independent of the coordinates of the scatterers and thus is not sensitive to
relaxations; and

(ii) the interference contribution due to theN(N − 1) non-diagonal terms proportional
to cosines and depending on the positions of the atoms.

For a given modek and for a given positionr in the detector plane, the standard
deviation of the interference term is∼√N(N − 1) ∼ N . However, additional averaging
over the∼N2/3 different modes and over the different positions ofr reduces the standard
deviation toN/(N2/3)1/2(N2/3)1/2 = N1/3. Here positions separated by distances larger than
∼1/k are to be considered as independent, as regards the interference, giving in our units
aboutN2/3 independent positions. Therefore, the total standard deviation of the interference
contribution due to a displacement of all scatterers is smaller than the average backscattered
flow by about a factor ofN/N1/3 = N2/3. If one considers the current transport according
to the concept of ‘quantum channels’, where in the weak-scattering limit each elementary
cell in the point contact orifice roughly corresponds to one channel, the standard deviation of
the interference contribution is of the order of the contribution of one channel, in agreement
with the picture of universal conductance fluctuations (see, e.g., reference [34]).

For a shift of a single scatterer (affectingN terms in the summation overi, j in
equation (4)) the effect is expected to be reduced byN1/2, while for an uncorrelated jump
of M atoms the expected effect is∼M1/2/N2/3N1/2 ∼ M1/2N−7/6 (normalized with respect
to the average backflow current). Thus a jump of about 15 atoms out of 500 should give a
fluctuation of relative magnitude∼0.003.

As seen, the order of magnitude of the experimental results is in agreement with this
estimate. Some larger effects shown in figure 5 can be related to the fact that in fact the
jumps cannot be considered as incoherent shifts ofM atoms; the coherency of the atomic
motion can increase the observed effect. Qualitatively, the results show the decrease of
the relative fluctuation with increasingN and with decreasingM. The magnitude of the
fluctuations gives information about the size of the relaxing region and about the character
of the motion.

The occurrence rate of the fluctuations is many orders of magnitude smaller than
characteristic vibrational frequencies of the structure and thus we are obviously dealing
with slowly relaxing degrees of freedom. However, for the simulated structures the rate
is still much larger than a typical frequency for the telegraph noise observed in real
experiments [1, 2]. The reason is again the instability of the structures studied with respect
to crystallization which simply prevents long observation times, which is in particular related
to the small sizes of the systems and to the role of the periodic boundary conditions. In real
systems, relaxations would be slowed down due to strains exerted by the embedding material.
From our point of view, the simulations give a good model for the slowly relaxing multi-
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stable entities in real structures. The structures in real point contacts will be somewhere in
between the amorphous and partially crystalline state. In this respect we would especially
like to emphasize that the multistable defects were also demonstrated for the simulated
crystalline defect structure of figure 5.

The simulated current fluctuations exhibit a rather complex time behaviour. The complex
behaviour shown in figure 4 results from jumps connecting eight different configurations of
nearly equal energy. Since the initial and final configurations are identical, all jumps are
reversible. Some jumps might trigger each other, while others will occur randomly. For
example, after 42 000 MDS a jump followed immediately by the return jumps occurs; 15 000
MDS later, the same jump is followed by two different jumps before returning to the start
configuration. In fact, the simulated picture resembles the one observed for real metallic
contacts [2] at high enough temperatures referred to as ‘fluctuator melting’. We would
like to emphasize that the slowing down of relaxations with temperature prevented us from
making studies of the extremely low temperatures where simpler two-state telegraph signals
are expected. We want to emphasize, however, that the temperatures of our simulations
are still far below the glass-transition and melting temperatures. We see a similarity to real
experiments [2] where ‘fluctuator melting’ was observed at temperatures of about 100 K,
i.e. far below the melting temperature of the metal.

Figure 7. The reversible relaxation atT = 0.1Tg observed in a glass withN = 5488 atoms.
Full spheres depict the initial positions of the atoms; shaded spheres depict the atomic positions
after the relaxation. Shown are all atoms with a displacement of more than 0.4 of the maximal
contribution to this relaxation. The effective mass of this relaxation isMeff = 18m and the
total jump length is1R = 1.22σ . The largest contribution of a single atom to this jump is
1Rmax= 0.29σ . The backscattering contribution of this jump is shown in figure 4.

Our simulations show that typically the ‘fluctuators’ involve large groups of atoms
comprising up to 100 particles arranged mainly along some preferential direction. In figure 7
we show such a fluctuator identified by the of MD simulations for the current noise shown
in figure 4. The atoms contributing strongly to the relaxation are shown with their respective
initial and final positions marked as full and shaded circles. The structure formed by the
particles resembles a chain with side branches. Note that the displacement of the atoms from
the initial minimum to the second one is nearly a one-directional displacement (along the
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chain). This fluctuator corresponds in figure 4 to the pronounced reversible relaxation after
42 000 MDS with an effective massMeff = 18m and a total displacement1R = 1.22σ .

Figure 8. The reversible relaxation atT = 0.04Tg observed in a Se glass withN = 750 atoms.
Full spheres depict the initial positions of the atoms; shaded spheres depict the atomic positions
after the relaxation. Shown are all atoms with a displacement of more than 0.2 of the maximal
contribution to this relaxation. The maximal contribution to this relaxation is1Rmax= 0.44 Å.
The backscattering contribution of this jump is shown in figure 6.

Multistable configurations are more easily formed in the more complex Se structure.
To some extent this hints towards a possible role of complex defects in the formation of
fluctuators. In figure 8 we show the atoms which strongly participate in the telegraph noise
shown in figure 6 fort < 250 ps. The complexity of the relaxation is reflected by the
fact that the atoms of two regions of the system strongly participate in the jump. One of
the structures of the relaxing entity is nearly one dimensional and the atoms comprising
this structure move cooperatively along this preferential direction. In particular, one can
speculate on the apparent similarity between the helical structure in Se and the structure near
the core of a screw dislocation. In this respect we would like to mention the experimental
studies [35] where the observed 1/f noise was shown to originate from atomic motion near
dislocation cores.

One notes that the picture of the current behaviour is more complex than simple
fluctuations which average out over long enough timescales which are not accessible in
MD simulations. We observe a number of relaxations and related current fluctuations with
different relaxation times. The time window of our simulation is too narrow to determine
whether these fluctuations obey a 1/f law in the large-ensemble or long-time limits.

To conclude, in the framework of a simple model we have carried out a first simulation
of multistable current noise in disordered contacts. The slowly relaxing modes responsible
for the noise are visualized. The dependence of the magnitude of the noise on the size
and structure of the modes was studied. In particular, the role of coherent atomic motion
was emphasized. An important feature is a drastic change in the fluctuator dynamics (a
transition to a complex multistable character of the fluctuations) at temperatures of about
a tenth of the melting temperature of the sample; this behaviour agrees with ‘fluctuators
melting’ reported for real metallic point contacts [2].
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